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Instituto de Matemática e Estatı́stica, Universidade de São Paulo, R. do Matão 1010, 05508-090 São Paulo, Brazil

Received 3 August 2006; received in revised form 24 May 2007; accepted 7 June 2007
Available online 22 June 2007
Abstract

We develop a global semi-implicit semi-Lagrangian model for the atmospheric adiabatic primitive equations discretized
through finite-differences. The model formulation includes a new semi-Lagrangian treatment of the continuity equation
and a spatially averaged Eulerian handling of the orography. These techniques contribute to the accuracy and efficiency
of the scheme. The semi-Lagrangian discretization makes the integration method very stable; we can carry out integrations
with time-steps which by far exceed the CFL time-step limitations of Eulerian schemes. We carry out several numerical
experiments, showing that good accuracy is achieved even when we triple the time-steps. Our numerical experiments also
demonstrate the computational efficiency of the method; we can run 10 days simulations at fine resolutions in a few hours
on a personal computer.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Semi-Lagrangian methods have been widely adopted in global numerical weather prediction models, in con-
junction with spectral [17,19], finite-elements [7] and finite-differences [6,12,10] discretizations. The main advan-
tage of semi-Lagrangian schemes is the fact that they are not limited by CFL-type restrictions in the choice of
time-step sizes, leading, in principle, to computationally more efficient schemes. There are, however, several
aspects to be considered in the development of an efficient numerical method for the global primitive equations.

In the present article, we develop a three-time-level semi-implicit semi-Lagrangian method, based on a
finite-difference discretization, for the three-dimensional primitive equations. We employ a uniform
latitude–longitude Arakawa C-grid on the sphere and a pressure based r vertical coordinate. The
semi-Lagrangian scheme is formulated in vector form and is handled as in [16]. We introduce a new
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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semi-Lagrangian treatment of the continuity equation, employing a mean (vertically averaged) wind in the
advection of surface pressure. The treatment of this equation becomes essentially two-dimensional and there-
fore cheaper than other approaches as in [6] or [17]. We compare our formulation with those other approaches
and get similar accuracy in the numerical experiments at lower computational costs. We have also adapted the
spatially averaged Eulerian treatment of orography proposed in [18] to our finite-difference model. Our exper-
iments show the advantages of this formulation in the presence of steep orography, especially if large time-
steps are employed.

For the validation of the model we have employed the test case suggested by Polvani et al. [13]. We have run
several tests, at different resolutions, and we have obtained good agreement with the results given in [13].

We present numerical results demonstrating the stability of the scheme, even with time-steps which exceed
by far the CFL constraints of Eulerian schemes. At every time-step of the model, the semi-implicit part of the
discretization leads to a three-dimensional scalar equation to be solved. This equation is decomposed into a set
of two-dimensional Helmholtz-type equations, through the use of the precomputed eigenvectors of the matrix
of the vertical structure. We show that this is possible and that the resulting equations are elliptic, by proving
that the vertical structure matrix has a complete set of eigenvectors and that all its eigenvalues are positive.
The Helmholtz-type equations are solved efficiently with the help of a multigrid solver adapted from [2].
The computational complexity of the scheme varies linearly with an increase in the number of grid-points
in each model layer, in contrast with a higher complexity of spectral methods which employ Legendre trans-
forms. Only the process of decoupling the three-dimensional scalar equation associated with the semi-implicit
discretization has a higher complexity, being quadratic on the number of layers of the model. The final effi-
ciency of the model is very good. We are able to carry out 10 days forecasts at a spatial resolution of less than
one degree (0.9375�), with 28 vertical layers, in about three and half hours on a personal computer (with a
3.2 GHz Pentium 4, 2 MB cache and 3 GB of memory).

The paper is arranged as follows. In Section 2, we present the complete description of the model. A series of
numerical experiments focusing on the model validation, the multigrid performance, the variations of treat-
ment of the orography and of the continuity equation, the use of large time-steps and its effect on accuracy
and results on the model performance are presented in Section 3. We finish with some conclusions. We also
point out that the present work is a step towards a variable resolution model for the primitive equations, in
continuation to our work with shallow-water models [4].

2. The model formulation

The dry, adiabatic, primitive equations build the core of most global weather models. They are given by the
momentum equations
dV

dt
þ f k� VþrHUþ RTrH ln ps ¼ 0; ð1Þ
the thermodynamic equation
dT
dt
¼ jT

rps

x ¼ jT
_r
r
þ o ln ps

ot
þ V � rH ln ps

� �
ð2Þ
and the continuity equation
o ln ps

ot
þ V � rH ln ps þ Dþ o _r

or
¼ 0; ð3Þ
where we have adopted r = p/ps as the vertical independent coordinate (p is pressure and ps it’s value on the
Earth’s surface). The ‘horizontal’ coordinates are latitude and longitude (k,h), covering the whole sphere. The
prognostic variables of the model are the horizontal wind field V = (u,v), the temperature T and the surface
pressure ps. The other variables in the equations, which can be obtained diagnostically, are the geopotential
height U, obeying the hydrostatic equation:
r
oU
or
þ RT ¼ 0 ð4Þ
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and the pressure vertical velocity x = dp/dt. The Coriolis factor is f = 2X sinh, R is the gas constant, j = R/cp

and cp is the specific heat at constant pressure. $H is the horizontal gradient on a r surface ðrH ¼ i
a cos h

o
okþ

j

a
o
ohÞ and D = $H. V is the horizontal divergence. The total derivative is given by:
d

dt
¼ o

ot
þ V � rH þ _r

o

or
ð5Þ
where _r ¼ dr=dt is the vertical velocity. The coordinate r varies from 1 at the surface of the Earth to 0 at the
top of the atmosphere. As boundary conditions we have _r ¼ 0 for r = 0 and r = 1. The computational do-
main is given by {(k,h,r) 2 [�p,p] · [�p/2,p/2] · [0,1]}.

2.1. Time discretization

We employ a three-time-level semi-implicit semi-Lagrangian temporal discretization of the equations. The
basic idea is to split each equation for a field F as
dF
dt
þ N þ L ¼ 0; ð6Þ
where L is a linear (or linearized) part of the equation to be treated implicitly and N contains the non-linear
terms to be handled explicitly. Eq. (6) is discretized as
F nþ1 � F n�1
�

2Dt
þ N n

M þ Ln ¼ 0; ð7Þ
where we introduce the notation:
Nn
M :¼ Nn þ N n

�
2

; Ln :¼ Lnþ1 þ Ln�1
�

2
:

Superscripts refer to time instants, for instance, Fn means field F at time tn = t0 + nDt. The integration is car-
ried out along a Lagrangian trajectory. For each computational grid-point, where we will compute a new va-
lue Fn+1, there is a corresponding departure point (denoted by the * subscript) at time tn�1, such that a fluid
particle will evolve from the * point till the corresponding grid-point in a time-interval of 2Dt. The departure
points are computed (as in [16]) through the iterative scheme
rðkþ1Þ ¼ bðkÞðg � DtVðrðkÞ; rðkþ1Þ; tÞÞ ð8Þ

with
rðkþ1Þ ¼ r� Dt _rðrðkÞ; rðkÞ; tÞ; ð9Þ
where g is the computational grid-point at a r model layer. The superscripts denote the iteration number, with
ðrðkÞ; rðkÞÞ ¼ ðkðkÞr ; hðkÞr ; rðkÞÞ being the approximation to the mid-point of the trajectory. Following [14] the
approximation to r(k+1) in Eq. (8) is done on a tangent plane to the spherical surface on a r-layer, and pro-
jected into this surface (through the multiplication by b(k)). In this iterative process the values of the horizontal
and vertical velocities need to be interpolated to the approximation locations, since those do not in general
coincide with grid-points. For this purpose we employ bilinear interpolation. Once the mid-point of the tra-
jectory is computed (two iterations are normally sufficient), the departure points are determined by symmetric
(with respect to the mid-point) extension of the computed trajectory. This extension is done along a great circle
on the sphere, and linearly in r. In case any computed departure point lies below the first vertical layer or
above the last we nudge it to the closest layer.

We notice that the non-linear terms in (7) are approximately evaluated at the middle of the Lagrangian
trajectory at time tn, as the average of their values at the locations of the computational grid-point and of
the corresponding departure point. The linear terms at time tn�1 are evaluated at the same departure
points. For the computations at departure points we employ a quasi-cubic interpolation. This is a
modification of a tri-cubic interpolation, which reduces the 64 points stencil to a 32 points stencil
(see [8]).



1648 S.R.M. Barros, C.I. Garcia / Journal of Computational Physics 226 (2007) 1645–1667
We now give a more detailed description of the time discretization of the primitive equations. The momen-
tum equations are discretized as
1 We
cases a
time-le
Vnþ1 � Vn�1
�

2Dt
þ ðf k� VÞn þ ðRT 0rH ln psÞ

n
M þrHP n ¼ 0; ð10Þ
where the temperature is split as T = T0 + T 0, with T0 constant (we take T0 = 300 K) and the generalized geo-
potential is defined as P = U + RT0 lnps (with the two-dimensional field lnps being added to U at every level
r).1

For the discretization of the thermodynamic equation we need an expression for _r. We integrate the con-
tinuity equation (3) in order to get:
� o ln ps

ot
¼
Z 1

0

ðV � rH ln ps þ DÞdr ð11Þ
and
_r ¼ ð1� rÞ o ln ps

ot
þ
Z 1

r
ðV � rH ln ps þ DÞdr

¼ �ð1� rÞ
Z 1

0

ðV � rH ln ps þ DÞdrþ
Z 1

r
ðV � rH ln ps þ DÞdr: ð12Þ
Expressions (11) and (12) are used in the discretization of the thermodynamic equation:
T nþ1 � T n�1
�

2Dt
¼ jT V � rH ln ps �

Z 1

0

ðV � rH ln psÞdr

� �� �n

M

þ jT 0
_r
r
�
Z 1

0

Ddr

� �� �n

M

� jT 0

Z 1

0

Ddr

� �n

þ jT 0

r
�ð1� rÞ

Z 1

0

V � rH ln ps drþ
Z 1

r
V � rH ln ps dr

� �n

M

þ jT 0

r
�ð1� rÞ

Z 1

0

Ddrþ
Z 1

r
Ddr

� �n

: ð13Þ
For the semi-Lagrangian treatment of the continuity equation (11) we define the mean wind �V ¼
R 1

0
Vdr and

introduce the two-dimensional total derivative
d

dt

� �
2

¼ o

ot
þ �V � rH ð14Þ
to get the expression
d

dt

� �
2

ln ps þ
Z 1

0

Ddr ¼ 0; ð15Þ
which is discretized as
ln pnþ1
s � ln pn�1

s �2

2Dt
þ
R 1

0
Dnþ1 drþ ð

R 1

0
Dn�1 drÞ�2

2
¼ 0: ð16Þ
The departure points *2 are obtained from the two-dimensional mean-wind trajectory.
It has been observed that semi-Lagrangian schemes may present spurious resonant responses to orographic

forcing [11,18]. A modification has been proposed by Ritchie and Tanguay [18] for a spectral model, which
makes this problem much less severe. We adapt their suggestion, introducing a variation for the discretization
of the continuity equation. For this, consider the splitting:
also considered the explicit treatment of the Coriolis terms as an option in the code. Results were in general similar, but in some
bit noisier. We have chosen the implicit handling of the Coriolis terms as our primary option. This may be more relevant for two-

vel models (see for example [19]), which we consider in our future developments.
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ln ps ¼ l0 � Us

RT 0

; ð17Þ
where Us is the geopotential orography (gravity times the height of the Earth’s topography). With this defini-
tion, the field l 0 will be much smoother than lnps, which varies strongly with the bottom topography. We write
then the continuity Eq. (15) as an equation for l 0 and discretize it in the form
l0nþ1 � l0n�1
�2

2Dt
þ
R 1

0
Dnþ1 drþ ð

R 1

0
Dn�1drÞ�2

2
�

�V � rHUs

RT 0

� �n

M

¼ 0: ð18Þ
In our numerical experiments we compare both approaches, presenting evidence of the benefits of this mod-
ification. Also other variations in the way the continuity equation is treated in global models [6,17], will be
considered.

2.2. Vertical discretization

Our vertical discretization is based on CPTEC’s model, which originated from COLA’s GCM [9], with the
introduction of necessary modifications for a semi-Lagrangian formulation. The atmosphere is divided into Nr

layers, where layer k has width Dk. The layers are numbered 1 to Nr, from the Earth’s surface to the top of the
atmosphere (actually following the variable r̂ ¼ 1� r, with Dk ¼ r̂kþ1 � r̂k), as shown in Fig. 1. Each model
variable is represented at the middle of each layer, with the exception of the vertical velocity, which is stored at
layer interfaces. Also the surface pressure and the geopotential orography are only defined at the Earth’s sur-
face. The vertical integrals are approximated (with second order accuracy) by the repeated application of the
mid-point rule.

In order to complete the discretization, we still need a way of evaluating the geopotential U, which is part of
the generalized geopotential P used in Eq. (10). For this we make use of two forms of the hydrostatic equation.
First we integrate (4) (using that roU/or = o/or(rU) � U) in order to get
Z 1

0

Udr ¼ Us þ
Z 1

0

RT dr; ð19Þ
discretized as
Fig. 1. Vertical distribution of model variables.
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XNr

k¼1

UkDk ¼ Us þ R
XNr

k¼1

T kDk: ð20Þ
The hydrostatic equation is also written in the equivalent form
oU
or
þ cpH

oP
or
¼ 0 ð21Þ
where P = (p/p0)j is the normalized pressure (p0 is constant) and the virtual temperature H obeys the relation
T = PH. We discretize (21) at layer interfaces as
Uk�1 � Uk ¼
cp

2
ðHk þHk�1ÞðPk �Pk�1Þ; k ¼ 2; . . . ;N r ð22Þ
and obtain:
Uk�1 � Uk ¼ cpðT k�1h1ðk � 1Þ þ T kh2ðk � 1ÞÞ; k ¼ 2; . . . ;N r: ð23Þ

We have introduced the notation
h1ðk � 1Þ ¼ 1

2

Pk

Pk�1

� 1

� �
; h2ðk � 1Þ ¼ 1

2
1�Pk�1

Pk

� �
; k ¼ 2; . . . ;Nr ð24Þ
and observe that the ratios between values of P on two consecutive vertical levels depend only on the values of
r on those levels, with Pk/Pk�1 = (rk/rk�1)j. Eqs. (20) and (23) establish the vertical relationship between
temperature and geopotential, at any point on the Earth’s surface:
CU ¼ cpHT þ ~Us ð25Þ

with the Nr · Nr matrices
C ¼

1 �1 0 � � � 0 0

0 1 �1 � � � 0 0

� � � � � � � �
0 0 0 � � � 1 �1

D1 D2 D3 � � � DNr�1 DNr

0BBBBBB@

1CCCCCCA

and
H ¼

h1ð1Þ h2ð1Þ 0 � � � 0 0

0 h1ð2Þ h2ð2Þ � � � 0 0

� � � � � � � �
0 0 0 � � � h1ðNr � 1Þ h2ðNr � 1Þ

jD1 jD2 jD3 � � � jDNr�1 jDNr

0BBBBBB@

1CCCCCCA:
The vector ~Us is given by ~Ut
s ¼ ð0; . . . ; 0;UsÞ. Here and in the subsequent description we look at the three-

dimensional fields (e.g. u, v, U and T) as vectors of two-dimensional fields, one at each of the Nr layers
and denote, for instance T t ¼ ðT 1; T 2; . . . ; T NrÞ. We define A = cpC�1H, where
C�1 ¼

1� r̂2 1� r̂3 1� r̂4 � � � 1� r̂Nr 1

�r̂2 1� r̂3 1� r̂4 � � � 1� r̂Nr 1

� � � � � � � �
�r̂2 �r̂3 �r̂4 � � � 1� r̂Nr 1

�r̂2 �r̂3 �r̂4 � � � �r̂Nr 1

0BBBBBB@

1CCCCCCA

(remembering that r̂i ¼

Pi�1
j¼1Dj), and get
U ¼ AT þ �U3d
s ; ð26Þ
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where we have introduced the notation ð�U3d
s Þ

t ¼ ðUs;Us; . . . ;UsÞ for the replication of a surface field to all
r-levels.

We provide now the details about the thermodynamic equation (13). There are two terms in the RHS of this
equation treated implicitly, one of which is �jT 0

R 1

0 Ddr, discretized in the vertical as �jT 0

PNr
k¼1DkDk. The

other term is the part of the term jT 0 _r=r which is handled implicitly. The vertical discretization of this quan-
tity begins by rewriting it as
jT 0

_r
r
¼ T 0

P
_r
oP
or
¼ T 0

P
oð _rPÞ

or
�P

o _r
or

� �
: ð27Þ
From this expression we derive the discrete form:
T 0

Pk

_rk
~Pk � _rkþ1

~Pkþ1

Dk
�Pk

_rk � _rkþ1

Dk

� �
; ð28Þ
where _rk is defined at the interface between layers k and k � 1 and ~Pk, at the same interface, is defined as
~Pk ¼ ðPk þPk�1Þ=2. Using this definition in (28) we get the discretization:
jT 0

_r
r
� � T 0

2Dk
_rkþ1

Pkþ1

Pk
� 1

� �
þ _rk 1�Pk�1

Pk

� �� �
: ð29Þ
We now use (12) for deriving the discrete form
_rk ¼
Xk�1

j¼1

DjðVj � rH ln ps þ DjÞ � r̂k

XNr

j¼1

DjðVj � rH ln ps þ DjÞ ð30Þ
(remember that r̂ ¼ 1� r and that the vertical indexing follows this variable as in Fig. 1). Now, recalling that
only the sums involving the wind divergence in the definition of _rk belong to the implicit term of the thermo-
dynamic equation (13), and using (29), (24) and (30) we get the expression for the discrete form of this implicit
term:
T 0

Dk
h1ðkÞ r̂kþ1

XNr

j¼1

DjDj �
Xk

j¼1

DjDj

 !
þ h2ðk � 1Þ r̂k

XNr

j¼1

DjDj �
Xk�1

j¼1

DjDj

 !" #
; k ¼ 1; . . . ;N r
with h2(0) = h1(Nr) = 0. The discrete thermodynamic equation can then be put together as
T nþ1 þ DtBDnþ1 ¼ RT ; ð31Þ

where the right-hand side RT depends on variables at previous time steps and the Nr · Nr matrix B couples the
equations on the different vertical layers. This matrix can be written as
B ¼ T 0M�1HtðC�1ÞtM ð32Þ

with the matrices H and C as before. We have introduced the diagonal matrix M whose diagonal terms are
defined as Mi,i = Di,i = 1, . . . ,Nr. After the temporal and vertical discretization we obtain from Eqs. (10),
(31) and (18) the implicit system to be solved:
J
unþ1

vnþ1

� �
þ DtrHP nþ1 ¼

Ru

Rv

� �
;

T nþ1 þ DtBDnþ1 ¼ RT ;

l0nþ1 þ DtRT 0d: Dnþ1 ¼ Rl;

ð33Þ
where
J ¼
1 �F

F 1

� �
; F ¼ Dtf ; RV ¼

Ru

Rv

� �
and dt ¼ ðD1; . . . ;DNrÞ:
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From Eqs. (17) and (26) we get
P ¼ AT þ ðRT 0Þ �l03d ð34Þ

with ð�l03dÞt ¼ ðl0; l0; . . . ; l0Þ. Combining Eq. (34) with (33) we obtain
P nþ1 ¼ �DtðABDnþ1 þ ðRT 0Þ2NMDnþ1Þ þ ART þ ðRT 0Þ �Rl
3d ; ð35Þ
which we will denote by
P nþ1 ¼ �DtEDnþ1 þ RP: ð36Þ

The matrix N introduced in (35) has all entries equal to 1. After multiplying the momentum equation in (33) by
J�1 ¼
G FG

�FG G

� �
ð37Þ
(where G = 1/(1 + F2)), we take its horizontal divergence in order to get
Dnþ1 ¼ �DtrH � ðJ�1rHP nþ1Þ þ rH � J�1RV: ð38Þ

Substitution of this equation into (36) leads to a three-dimensional (elliptic) scalar equation for the generalized
geopotential
P nþ1 � Dt2ErH � ðJ�1rHP nþ1Þ ¼ RP � DtErH � J�1RV: ð39Þ

The vertical coupling matrix E gives the character of this equation. We now prove:

Proposition 1. The vertical structure matrix E has a complete set of eigenvectors and real positive eigenvalues.

Proof 1. The vertical structure matrix is given by E = AB + (RT0)2NM. Using the expressions for A and B we
get
E ¼ cpT 0C�1HM�1HtðC�1ÞtMþ ðRT 0Þ2NM ¼ cpT 0ðC�1HM�1HtðC�1Þt þ jRT 0NÞM
¼ cpT 0ðC�1HM�1=2ðM�1=2ÞtHtðC�1Þt þ jRT 0NÞM:
It follows that multiplying E on the right by M�1 leads to
EM�1 ¼ cpT 0ðSSt þ jRT 0NÞ

with S = C�1HM�1/2. Notice that
x:Nx ¼
XNr

i¼1

xi

 !2
for every x 2 RNr . We then have that N is symmetric positive semi-definite and therefore the matrix EM�1 is
symmetric positive definite. And so is the matrix T = M1/2(EM�1)M1/2, having therefore a complete set of
eigenvectors and positive eigenvalues. Notice that T = M1/2EM�1/2, showing that T and E are similar and
share the same eigenvalues. Now let U be an orthogonal matrix diagonalizing T. We then have K =
UtTU = UtM1/2 EM�1/2U, with K diagonal, with the eigenvalues of T in the diagonal. Therefore,
EM�1/2U = M�1/2UK. This shows that the columns of the matrix L = M�1/2U build a basis of eigenvectors
of E, completing the proof. h

We can now multiply Eq. (39) by L�1 (where L is the matrix of the eigenvectors of E) in order to get:
bP nþ1 � Dt2KrH � ðJ�1rH
bP nþ1Þ ¼ L�1ðRP � DtErH � J�1RVÞ; ð40Þ
where bP ¼ L�1P (observe that the vertical operator L�1 and the horizontal differential operators commute).
The multiplication by L�1 decouples the three-dimensional equation into a set of Nr independent two-dimen-
sional Helmholtz-type equations, which are elliptic since the eigenvalues of E are positive. After solution of

this set of equations, the generalized geopotential is obtained by forming P nþ1 ¼ LbP nþ1 and used to determine
the wind field and divergence, from which the temperature and the logarithm of the surface pressure can be
derived according to (33).
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We observe that other authors employ a similar treatment, but based on the assumption of the existence of
a basis of eigenvectors and positive eigenvalues as e.g. in [6].

2.3. Spatial discretization

The method described so far could be used in conjunction with different approaches to the spatial discret-
ization. One could adopt finite-elements, finite-differences or even spectral developments to discretize the fields
on each r-layer. We employ second order finite-differences on a uniform (k,h) latitude/longitude Arakawa C-
grid (cf. Fig. 2), with mesh-sizes Dk = Dh = p/Nh, where Nh + 1 is the number of grid-latitudes (including the
poles) and Nk = 2Nh is the number of longitudes, on each layer. With a C-grid distribution, we have the model
variables on convenient locations for centered differences. For instance, short (one mesh-size) differences can
be employed when discretizing the gradient of the generalized geopotential. The same is true in the computa-
tion of the horizontal divergence. However, some terms of the equations require average of the wind compo-
nents, when those are required at the locations of the other variables. This is the case for the Coriolis terms
and also for the evaluation of V Æ $H lnps in the thermodynamic equation.

The momentum equation has been written and discretized in vector form. When equating terms at the arri-
val and departure points we have to consider that at each point on the sphere the local coordinate system
changes. To compare the vector components at two different locations we need to represent them at the same
system of reference. For doing this we adopt as reference the tangent plane at the middle of the trajectory, with
unitary coordinates in the local k and h direction. This approach is described in detail by Ritchie in [15] and we
follow it closely. In component form, in spherical coordinates, the equations have the form
unþ1 � Dtfvnþ1 þ Dt
2a cos h

oP nþ1

ok
¼ ru; ð41Þ

vnþ1 þ Dtfunþ1 þ Dt
2a

oP nþ1

oh
¼ rv: ð42Þ
They are combined to form the divergence at time tn+1, according to Eq. (38). We keep the analytic form of the
operators involved in the left-hand side of the equations until forming the equation for the generalized geo-
potential (39), which leads to the Helmholtz-type equations (40) associated with each of the eigenvalues kk

of matrix E. In spherical coordinates these equations have the form
lk
bP � G

cos2 h
o2bP
ok2
þ 1

cos h
oFG
oh

obP
ok
� o

oh
G cos h

obP
oh

 ! !
¼ rp ð43Þ
Fig. 2. C-grid and model variables close to the pole.
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with lk = a2/(kkDt2), a being the Earth’s radius. Only at this point we discretize the differential operator
through centered differences. We point out, however, that the right-hand sides ru and rv (from (41) and
(42)) are discretized on the C-grid. The application of the inverse J�1 (37) at the corresponding grid locations
requires interpolation of ru to v-locations and of rv to u-points. The resulting quantities are then properly lo-
cated for the application of the discrete divergence operator, and the right-hand side of (38) is completed. We
notice that similar approaches have been used in [5,6], leading to Helmholtz-type equations of the same form.

The formal singularity at the poles in (43) can be removed by switching to an integral form and use of quad-
rature rules (compare [4] for details). As in [5,4] we employ a multigrid scheme (based on [2]) in order to solve
the equations. We point out that for the larger eigenvalues of E, the contribution of the term lk is very small
and the behaviour of the multigrid method will be similar to the case of a Poisson equation. For the smaller
eigenvalues, the discrete matrix becomes more diagonally dominant and the convergence rates are even
improved.

The Helmholtz-type equation on the sphere, discretized by finite-differences on a uniform latitude–longi-
tude grid, leads to a highly anisotropic operator close to the poles. As a consequence, usual point relaxation
methods such as red–black or lexicographical Gauss-Seidel provide poor smoothing of the errors. The use of
line-relaxation, where the unknowns at the same latitude are updated simultaneously (through the solution of
a periodical tridiagonal system at each latitude), provides appropriate smoothing for an efficient method (cf.
[2]). The other components of the multigrid solver are bilinear interpolation of the coarse grid correction and
full-weighting restriction of residuals. A V(1, 1) cycle (with one sweep of relaxation before and one after the
coarse grid correction) guarantees convergence factors below 0.1 (this means that each multigrid cycle reduces
the error by a factor larger than 10). We employ a full-multigrid scheme, where solutions on coarser grids
(after bicubic interpolation) are used as initial approximations on finer grids (see [2]). In the section on numer-
ical results we will see the effects of the different eigenvalues defining the parameter lk on the behaviour of the
multigrid scheme.

2.4. Summary of a time-step

We summarize now all the stages required for a time-step. Given the model fields on the computational grid
on two consecutive times tn�1 and tn, the determination of the new fields at time tn+1 comprises:

� Evaluation of the vertical velocity _rðtnÞ at every grid-point according to the discrete form of Eq. (12).
� Computation of the departure points at every grid-point through the iterative process (8) and (9). Details

about the spherical geometry are handled as in [14]. Due to the use of a C-grid, we need different trajectories
related to the P, u and v grid-points. We compute the trajectories having the P grid-points as arrival points
and obtain the other two through linear interpolation.
� Computation of the vertically averaged mean horizontal wind and of the corresponding two-dimensional

departure points (as in iteration (8), but with a wind field independent of r).
� Evaluation on the computational grid of the terms that will build the right-hand sides of Eqs. (10), (13) and

(18). The explicit terms are computed at time tn and the ones which are treated implicitly at time tn�1. The
necessary interpolations to departure points are carried out.
� Right-hand sides of the momentum equations are transformed to have the equations in component form

(details are as in [15]).
� Computation of the right-hand side for Eq. (39), followed by the multiplication by the precomputed inverse

of matrix L, formed by the eigenvectors of E.
� Multigrid solution of the Nr resulting Helmholtz-type Eq. (43), associated with the eigenvalues of E.
� The solutions of Eq. (43) are multiplied by L to obtain the generalized geopotential P.
� Computation of the horizontal gradient of P and determination of the horizontal wind field V through (41)

and (42).
� Computation of the new horizontal divergence and determination of Tn+1 and l 0n+1 using (33).

We observe that matrix E is time and spatial location independent. It is precomputed, as well its eigenvec-
tors and eigenvalues (matrices L and K). Since we are dealing with a three-time-level method, the first time-
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step requires a special treatment. We employ a slow start k-step procedure, in which we define dt = Dt/2k. We
initially assume that the fields at time t0 + dt are the same as the initial values at t0. Performing one time-step
with time increment equal to dt we get an approximation for the fields at t = t0 + 2dt. We now double dt and
repeat the time-step, using the values at t0 and t0 + Dt/2k�1 to get an approximation at time t0 + Dt/2k�2. We
repeat this process, doubling dt at each step till we get an approximation at time t0 + Dt. From there on we
proceed normally with Dt time increments. We normally take k = 2 in our numerical experiments. Another
observation related to the use of a three-time-level method is that this type of discretization has a computa-
tional mode slightly unstable. In order to prevent its growth we employ a Robert/Asselin type filter (with
parameter 0.025) (cf. [1]).

3. Numerical results

In this section, we provide several results concerning the performance and quality of the results obtained
with our model. We begin with results obtained for a model test case, proposed by Polvani et al. [13].

3.1. Model validation

One of the problems concerning the validation of models for the primitive equations is the fact that analytic
solutions are not available. Recently, a new test case has been suggested, for which the authors were able to
compute converged numerical solutions with two different numerical models [13]. The test consists of a 12-day
integration of the unforced primitive equations from a prescribed initial state (a baroclinically unstable mid-
latitude jet), whose details are provided in [13]. There is, however, one modification to the equations, which is
the explicit inclusion of a diffusion term in the thermodynamic and momentum equations (necessary to pre-
vent the development of finite-time singularities, according to the authors). The Laplacian of the respective
variables (T, u and v) multiplied by a diffusion coefficient is added to the right-hand side of the equations.

We have added in our numerical scheme an implicit discretization of the diffusion term, through a frac-
tional step method, as done in spectral models (for instance, in [17]). A time-step is carried out as before
but the new values of the fields are seen as provisional values, which will be altered by the diffusion step in
the following manner: for instance, if ~T nþ1 is the temporary value of the new temperature, we compute the
new temperature by solving the equation
T nþ1 � 2mDtr2T nþ1 ¼ ~T nþ1;
where m = 7 · 105 m2/s is the diffusion coefficient. This leads to the necessity of solving a two-dimensional
Helmholtz equation on each model layer, for each of the three variables involved, at the end of every time-
step. We again employ a multigrid method in the solution of these equations.

We now show the results that we have obtained with different model resolutions, providing evidence of the
convergence of the solutions with the refinements of the meshes. In Fig. 3 we display the time evolution of the
temperature field in the northern hemisphere (from latitude 15 to 85), where the instabilities develop. These
results were computed on a 256 · 128 lon/lat grid with 20 vertical layers (the temperatures shown in Fig. 3
are in the lowest layer of the model). We can see good agreement of these results with Fig. 2 of Polvani
et al.’s article (the resolution of the latter is better, since a spectral T341L20 has been employed [13]).

In Fig. 4 we have the temperature field in the northern hemisphere after 12 days, obtained with different
model resolutions. From top to bottom we employed a 128 · 64 grid with 20 layers, a 256 · 128 grid with
20 layers, a 256 · 128 grid with 40 layers and a 512 · 256 grid with 20 layers. The time-steps used were, respec-
tively, 2400, 1200, 1200 and 600 s. We can observe good convergence of the results. We point out that we have
also included results obtained with 40 model layers (third graphic from the top). In this case, r = 0.975 is not
in the middle of a model layer and the results were linearly interpolated from the two surrounding layers.

We now compare the computed vorticity field after 12 days of integration with several different resolutions.
We point out that vorticity is not a prognostic variable in our model, but it is derived from the velocity fields,
in contrast to Polvani’s results obtained with spectral (and spectral element) schemes, which compute vorticity
as a prognostic variable. In Fig. 5 we plot the vorticity field at the r = 0.975 surface, for six different resolu-
tions (details are given in the figure caption). We can observe that the results with a 128 · 64 grid (first two



Fig. 3. Time evolution of the temperature field at layer r = 0.975. From top to bottom we have the field after 6, 8, 10 and 12 days of
integration. Computations used a 256 · 128 lon/lat grid with 20 vertical layers and time-steps of 600 s. The countour interval is 2.5 K and
the temperature values lie between 252.5 K and 292.5 K.
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graphics on top) are not converged, and the improvement brought by halving the time-step to 1200 s (in the
second graphic). Further improvements towards convergence are gained by using a finer 256 · 128 grid (third
graphic from the top) and then further halving the time-step (to 600 s, in the fourth graphic). In the fifth gra-
phic we observe the effect of doubling the number of model layers to 40, while still keeping the 1200 s time step
of the third graphic. Finally, in the bottom graphic we have the results with a 512 · 256 grid with 20 layers and
a time-step of 600 s. The vorticity field has almost converged. The results are in good agreement with Polvani’s
results [13]. The patterns are pratically the same, although a bit less intense in some of the centers. The cal-
culated maximum norm of the vorticity field at 256 · 128 and 512 · 256 grid resolution is of 7.7 · 10�5 s�1

(after 12 days, at the r = 0.975 layer). The value obtained by Polvani et al. is 7.4 · 10�5 s�1.
In order to quantify the order of convergence we have computed L2-norms of the error at several resolu-

tions with respect to a fine-grid reference solution (computed on a 512 · 256 mesh with 20 vertical layers and a
time step of 300 s) for 12 days. In Figs. 6 and 7 we present the results at the lowest layer (r = 0.975). We can
observe that refining the mesh by a factor 4 reduces the error in Temperature after 12 days approximately by a
factor of 16, presenting evidence of second order convergence. Very similar reduction factors are obtained for
the wind variables u and v (not shown in the Figure). For the vorticity, which is not a primary model variable,
the error reduction is slower. The error diminishes by a factor about 9 when we refine the mesh by a factor 4.



Fig. 4. Temperature field at layer r = 0.975 after 12 days of integration, with different resolutions. From top to bottom we have: (a)
128 · 64 · 20 grid, Dt = 2400 s, (b) 256 · 128 · 20 grid, Dt = 1200 s, (c) 256 · 128 · 40 grid, Dt = 1200 s and (d) 512 · 256 · 20 grid,
Dt = 600 s. Countour intervals are as in Fig. 3.
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3.2. Multigrid performance

In this section, we consider the multigrid solution of the elliptic equations resulting from the semi-impli-
cit discretization. We present results concerning the multigrid convergence factors and its variation with the
diagonal term in the Helmholtz equations. Table 1 contains convergence factors of V(1, 1)-cycles for dif-
ferent resolutions and different eigenvalues kk (we take the six largest eigenvalues, convergence gets faster
and faster for the smallest ones). The convergence factors are computed as the geometric mean residual
reduction factor in the first 5 cycles (meaning that if m is this factor and R0 the initial residual then after
5 cycles the residual will be R5 = m5R0). We observe that all factors are well below 0.1, with a typical mul-
tigrid efficiency for Poisson-type equations. We also notice that for the smaller eigenvalues the performance
is even better, due to the increase in the diagonal dominance of the discrete operator. This effect is reduced
for finer grids, although we get convergence to machine precision with only 2 or 3 cycles for the smallest
eigenvalues, even with these fine-grids.

With the achieved convergence factors and the use of the Full-Multigrid algorithm, just a few cycles will be
sufficient to solve the equations to machine precision. In practice this is not necessary and two multigrid cycles
provide good accuracy.



Fig. 5. Vorticity field at layer r = 0.975 after 12 days of integration, with different resolutions. From top to bottom we have: (a)
128 · 64 · 20 grid, Dt = 2400 s, (b) 128 · 64 · 20 grid, Dt = 1200 s, (c) 256 · 128 · 20 grid, Dt = 1200 s, (d) 256 · 128 · 20 grid, Dt = 600 s,
(e) 256 · 128 · 40 grid, Dt = 1200s and (f) 512 · 256 · 20 grid, Dt = 600 s. The range of contours varies from �7.5 to 7.5 · 10�5 s�1 with
countour interval of 1 · 10�5 s�1.
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Table 1
Multigrid convergence factors for Eq. (43) with the largest values of the eigenvalues kk

Horizontal grid 96 · 49 192 · 97 384 · 193

Largest eigenvalue 0.050 0.055 0.048
Second eigenvalue 0.036 0.054 0.052
Third eigenvalue 0.015 0.045 0.055
Fourth eigenvalue 0.0048 0.028 0.052
Fifth eigenvalue 0.0014 0.013 0.043
Sixth eigenvalue 0.0002 0.0063 0.032

Results are shown for different horizontal grid resolutions. In all cases we have used Dt = 1h and 28 vertical layers.
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3.3. Treatment of orography

We present some results concerning the comparison between two different model formulations. One uses
lnps as the variable to be advected (according to Eq. (16)), as commonly chosen, for example in [16,6]. In
our model formulation we considered the splitting (17) with the formulation (18) used for the advection of
the surface pressure (a similar change has been used in [19]). In Fig. 8 we see model results for the tem-
perature field at the fifth lowest model layer after 2 days of integration with Dt = 1h in the South American
region. We can see (bottom left) the noise generated close to the Andes, where we have a strong



Fig. 8. Comparison of temperature field at fifth lowest layer ( r= 0.06946) with the original (left) and modified (right) treatment of
orography. Results refer to an integration on a 384 · 193grid,with28modellayers,andwithDt=60 m.InitialdatafromMay19th2004.
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orographic variation. The same results with the modified version are presented at the bottom right. We
observe that this modification in formulation highly attenuates the noise due to the orographic forcing,
and we adopt this solution.



Fig. 9. Geopotential height at 500 hPa after 3 days of integration from initial data of March 26th 2004, with the three different
formulations for the continuity equation. Integrations were carried on a 192 · 97 grid with 28 layers and Dt = 60 m.
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3.4. Handling of the continuity equation

We propose in the present paper a new way of handling the continuity equation in semi-Lagrangian models,
with the advection through the mean wind as in Eq. (15). Alternative formulations (as in [6]) use a projection
of the three-dimensional Lagrangian trajectory on each layer, advect lnps on each layer according to these
projected trajectories and integrate (average) the final result. Another approach (see [17]) uses the full
three-dimensional Lagrangian trajectory, performs three-dimensional interpolation of the forcing terms and
integrates (averages) at the end. The main advantage of our approach is that it is purely two-dimensional after
computing the mean wind and therefore is simpler and computationally cheaper. We have implemented the
three alternatives and the results are similar (see Fig. 9). We observe that using the averaged wind or the full
three-dimensional wind leads practically to the same results (the RMS differences after 3 days amount to 0.5 m
in the 500 hPa surface, shown in Fig. 9). After 5 days the RMS differences are of 0.8 m. On the 850 hPa surface
we have differences of 0.5 m after 3 days and of 0.9 m after 5 days. Results obtained with the projected three-
dimensional winds are also similar, but larger differences can be observed (1.9 m after 3 days and 3.3 m after 5
days at 500 hPa, and 2.1 and 3.5 m after, respectively, 3 and 5 days at 850 hPa). Larger RMS differences also
result from the direct comparison between the results with the projected three-dimensional winds and with the
full three-dimensional wind (1.6 and 2.8 m after, respectively, 3 and 5 days at 500 hPa and corresponding val-
ues of 1.7 and 3.1 m at 850 hPa).

None of these formulations will lead to a formally conservative semi-Lagrangian scheme. There is some
debate about which of the formulations (as in [6] or in [17]) would present better conservation properties.
We compared our approach with the other two on this matter and they have similar properties also regarding
conservation, as shown in the 10 days integrations summarized in Fig. 10. The variations, of about 2–3 hPa in
10 days, are adequate for medium range forecasts. Again we notice that the projected winds lead to somewhat
worse results.

We point out that the modification for treating steep orography also improves the conservation of the
schemes. In [6] the authors employ a decentering parameter in their discretization, chosen in order to give
a better conservation. We don’t employ any decentering in our comparative results from Fig. 10. The modi-
fication for the orography is however used together with the three alternatives. We use in all other numerical
experiments our 2D-approach, since it gives comparable results with less computational work.

3.5. Time-step variation

The great advantage of semi-Lagrangian over Eulerian models is the fact that they allow the use of much
larger time-steps due to their improved stability properties. Using larger time-steps will make the model com-
putationally more efficient. On the other hand, the choice of time-steps will be restricted by accuracy require-
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ments. We present numerical results concerning the results sensitivity in relation to the choice of time-step size.
We perform integrations with our semi-Lagrangian scheme, first with the time-step adequate to Eulerian
schemes, which have to obey a CFL restriction. Then, we repeat the integrations doubling and tripling the
sizes of the time-steps, comparing the results with the first (reference) run. In Figs. 11 and 12 we show the geo-
potential height at 850 hPa and 500 hPa after 2 and 4 days of integration with time-steps of 10 and 30 min on a
384 · 197 horizontal grid with 28 vertical layers. One can observe that the larger time-steps, made feasible by
the semi-Lagrangian discretization, still lead to very similar results.

In order to quantify the possible losses in accuracy due to the larger time-steps we present in Figs. 13 and 14
the 850 hPa and 500 hPa rms (root mean square) error growth at two different resolutions. First, with a



uniform resolution of 1.875� we compare for 5 days a reference run with a time-step of 20 min, with runs with
40 and 60 min time-steps. The same types of results are presented for the finer resolution of 0.9375� (384 · 197
grid). We point out that we have employed no initialization tailored for our model. The initial states have been
initialized (with normal mode initialization) for CPTEC’s Eulerian spectral model. We also interpolated the
initial values to the C-grid locations, since the spectral model employs a gaussian grid. This explains why
the error grows faster at the beginning of the integration (first 6 h), since the fast gravity waves which remain
in the initial states won’t be well resolved with time-steps above the CFL restriction. In spite of this, the error
growths in relation to the reference run (of about 2–4 m a day) are small and the use of larger time-steps is
acceptable in terms of accuracy.
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In [6] the authors use the fields after two days of integration with a decentering (dissipative) parameter as
initial state. This initial integration acts as a dynamic initialization and helps to filter out the gravity waves of
the initial state. We do not do this in our experiments and prefer to show the results as they are, with this initial
error growth present. Anyway, the results show that time-steps three-times larger than CFL restrictions still
furnish good accuracy and can be used in conjunction with the semi-Lagrangian model. The use of large time-
steps with similar accuracy makes the Lagrangian scheme very efficient, comparing favorably to Eulerian
models.

3.6. Model performance

Our model presents a computational complexity per time-step which is almost linear on the number of grid-
points. An exception occurs when decoupling the three-dimensional elliptic Eq. (39) into a set of two-dimen-
sional equations, since the matrix multiplication required is quadratic on the number of layers. In Table 2 we
Table 2
CPU-times (in s) for the execution of 100 time-steps of the model at different resolutions

Layersfl Grid! 192 · 97 384 · 193

14 307.58 1226.05
28 668.96 2638.19
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furnish computational times for the execution of 100 model time-steps at two different resolutions, first with
1.875� of resolution, both in latitudinal and longitudinal directions, and also with 0.9375� (corresponding to a
horizontal grid of 384 · 193 grid-points). In both runs we employ 28 model layers. The grid has over 2 million
grid-points in the finer resolution. All computational results with our model have been obtained on a PC
(with a 3.2 GHz Pentium 4, 2 MB cache and 3 GB of memory). We also compare the times to run the model
with 14 vertical layers and with 28 layers, seeing the effects of the quadratic complexity of the decoupling
process. We can also observe that the cpu-times grow linearly with the grid-points when the number of layers
is the same.

We see that the finite-difference model furnishes an attractive alternative in terms of computational effi-
ciency for global integrations. A 10 days integration at the fine 384 · 193 mesh, with 28 model layers and
time-steps of 30 min (with good accuracy as shown before) will require about 12,500 s, or about three and
a half hours on a PC. Spectral models, although amenable to very efficient implementations on parallel
and vector computers (eg. [3]), present the potential drawback of the higher computational complexity asso-
ciated with Legendre transforms.

4. Conclusions

We have developed a semi-implicit semi-Lagrangian model for a finite-difference discretization of the global
primitive equations. The model employs spherical coordinates combined with a r-coordinate in the vertical
direction. We introduced a new way of handling the continuity equation which is more efficient than other
approaches, while providing similar numerical results. We have adopted a spatially averaged Eulerian way
of handling orography (based on [18]), which has proven to contribute to better results with large time-steps
in presence of steep orography. We have successfully employed a multigrid solver in the solution of the elliptic
equations resulting from the semi-implicit method, after a vertical decoupling, which we prove to be feasible.
We carried out several integrations with the test case proposed in [13] for the validation of the dynamical cores
of primitive equation models. The results produced by our model are in general in good agreement with the
converged results given in [13].

The global model has proven to be very stable, enabling the use of time-steps which by far exceed the cor-
responding CFL conditions related to Eulerian discretizations. We present numerical integrations with real
weather data evidencing that we can triple the time-step used by Eulerian schemes, with acceptable accuracy.
This makes the model very efficient. We can run a ten day simulation, with time-steps of half an hour, at a
relatively fine resolution (0.9375� on the sphere, 28 vertical layers), in about three and a half hours on a per-
sonal computer.

The model we have presented in this paper gives us the basis for the development of a full model with var-
iable resolution based on local refinements, extending our work done for shallow-water models in [4]. Other
interesting further development would be the direct use of a multigrid scheme for the 3D-equation resulting
from the semi-implicit discretization, which would reduce the computational complexity of this part of the
model to linear. This is part of ongoing work.
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